Deep learning Based Cloud And Shadows Detection on Satellite images

Anatol Filin, Gramant, Fertyle Guru Pradhan, Fertyle

Профессиональная конференция разработчиков высоконагруженных систем

SCOUT

Fertyle's app provides step-by-step guidance to ensure scouts collect quality data every time. Better scouting, better results and better savings.

PLAN

Improve your forecasting. App runs biological models to provide partial spraying strategies for your crops against pests, disease and weeds.

Importance of cloud detection why does it matter?

Per field/zone/pixel

Agri-specific multi-spectral models

Vegetation Soil Nutrition Irrigation Infestation

Landsat 8

Sources: USGS

Satellite Scenes - bands

Band 1: Coastal/Deep Blue

Band 2: Blue

Band 3: Green

Band 4: Red

Volgograd

Band 5: Near Infrared

Band 6: Short Wave Infrared (1.6 um)

Band 7: Short Wave Infrared (2.2 um)

Band 9: Cirrus (1.36 um)

Landsat 8's Spatial Resolution

Vis-NIR-SWIR = 30 m

Panchromatic = 15 m

Thermal IR = 100 m (Resampled to 30 m)

Satellite scenes – Cloud contamination

Volgograd

Nairobi,Kenya

Urumqi, China

Paris, France

Amazon Forest

Las Vegas, US

CLassification

FMASK Flowchart

Traditional Algorithms - FMASK

Find related *cloud* shadow pixels using

- solar geometry
- connectivity information

Problems with FMASK

- Complicated algorithm -> have to tune for each satellite
- Connectivity and spatial relationships only used for cloud shadow determination. They should also be used for cloud detection!
- Very sensitive to threshold values
- Real implementation often crash on some non standard situations
- No way to detect thin clouds!

FMASK baseline results

	Mean accuracy	Standard deviation	Lowest accuracy /scene	Highest accuracy/scene
Overall	87.4%	13.5%	26.2%	100%
Grass/Cropland	90.1%	11.9%	61.4%	98.3%

«Classical» CNN for visual recognition

Landsat 8 Cloud Cover Assessment Validation Data

Home

Landsat 8 Cloud Cover Assessment Validation Data

This collection contains 96 Landsat 8 Operational Land Imager (OLI) Thermal Infrared Sensor (TIRS) terrain-corrected (Level-1T) scenes, displayed in the biomes listed below. Manually generated cloud masks are used to validate cloud cover assessment algorithms, which

The interpretation for the bits in each manual mask is as follows:

Value	Interpretation	
0	Fill	
64	Cloud Shadow	
128	Clear	
192	Thin Cloud	
255	Cloud	

Grass/Crops	Scene ID (Level-1T)	Path	Row	Acquisition Date	Approximate Cloud Status
	LC80290292014132LGN00	29	29	5/12/2014	Cloudy
	LC80290372013257LGN00	29	37	9/14/2013	MidClouds
	LC80980712014024LGN00	98	71	1/24/2014	MidClouds
	LC81220312014208LGN00	122	31	7/27/2014	Clear
i	LC81220422014096LGN00	122	42	4/6/2014	Cloudy
	LC81320352013243LGN00	132	35	8/31/2013	MidClouds
	LC81440462014250LGN00	144	46	9/7/2014	Cloudy
	LC81490432014141LGN00	149	43	5/21/2014	Clear
	LC81510262014139LGN00	151	26	5/19/2014	Cloudy
			1		

Our approach: patch extraction

- The red pixel represents the center pixel of a 31x31 patch
- Center Pixel -> Class
- Extract patches for every pixel in a scene and classify

Clear Pixel

Cloud Shadow

Thin Cloud Pixel

Cloud Pixel

Singlepath CNN

All-CNN: only consists of convolutional layers

Multipath CNN

Inspired from neuroscience literature used to classify brain tumors.

Our network: FertyleNet

Training approach

- Concentrate on Grass/Cropland Scenes For a Total of 12 Images
- Randomly extract (almost) equal amount of 31x31 patches per class per scene
- Force at least **25%** of all patches extracted per class to contain "mixed" categories of pixels i.e, at least **20%** of patch pixels will be of a different category than the target pixel

Homogeneous Patches

Training approach – cont.

- 70/20/10: Training/Test/Validation Split
- Training Patches: 440,678 / Test Patches: 125, 908 / Validation Patches: 62954

Top of atmosphere conversion

• Rescale raw pixels into Top of Atmosphere (TOA) reflection

 $M_{
ho}$

 $A_{
ho}$ Q_{cal}

 θ_{SZ}

$$ToA = \frac{M_{\rho}Q_{cal} + A_{\rho}}{\cos(\theta_{SZ})}$$

= Band-specific multiplicative rescaling factor
= Band-specific additive rescaling factor
= Raw Band-Specific Pixel Value
= Local solar zenith angle

TOA Conversion

Cloud Detection Results

Cloud Results Analysis

Shadow Cloud Clear Add Cloud Add Shadow Miss Cloud Miss Shadow Other Issue

Improvement over humans ??

Human Classifier Thought These Dark Bodies Were "Clear" (probably thought they were water bodies. However, the FertyleNet correctly labeled these areas as cloud shadows!

Improvement over humans ?? Not really...

Bright Urban Zones Misclassified as Clouds!

More classification issues

Rivers and other dark areas misclassified as Cloud Shadows!

Accuracy results

Test Set: **125,908 patches** (25%/75% heterogenous-homogenous mix) Over 12 Grass/Cropland Scenes

Model Name	Accuracy	Relative to baseline	Notes
Fmask - baseline	90.1%		TOA No thin clouds
Fertyle (Raw)	84.4%	-5.7%	
SinglePath CNN	92%	+0.9%	TOA With thin clouds
FertyleNet	94.9%	+4.8%	TOA With thin clouds

Performance sucks (for now)

FMASK – 2-3 minutes per scene

Fertyle Net ~ 2 hours per scene

Effect of invisible bands

Software and hardware used

- Python Libraries For Preprocessing (landsat-util, GDAL, Scikit-Learn)
- Python Libraries for Deep Learning (Keras, TensorFlow)
- Hardware: Nvidia GeForce Titan X (3082 CUDA Cores, 336.5 GB/sec Memory Bandwidth)

Other Projects

Insects classification and quantification based on photo and video

Spatio-temporal blending of satellite images using Recurrent Neural Networks or similar methods

Thank you!

Anatol Filin, <u>anatol@gramant.ru</u>, Guru Pradhan, <u>guru@fertyle.com</u>